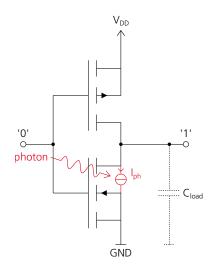
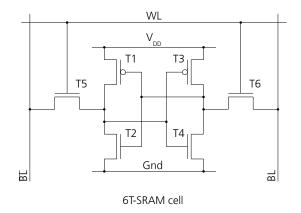

Locked out by Latch-up? An Empirical Study on Laser Fault Injection into Arm Cortex-M Processors

<u>Bodo Selmke</u>, Kilian Zinnecker, Philipp Koppermann, Katja Miller, Johann Heyszl, Georg Sigl, 09/13/2018



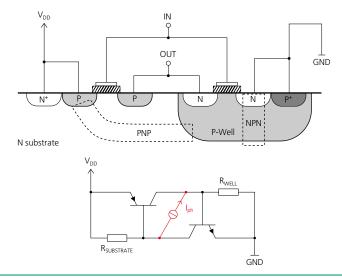
Latch-up locked? | BS | 09/13/2018 | 1 © Fraunhofer We tested four different **non-security** microcontrollers for their **suitability as LFI test devices**:

- ST microelectronics STM32-F0 (ARM Cortex-M0)
- ST microelectronics STM32-F4 (ARM Cortex-M4)
- NXP LPC11E14 (ARM Cortex-M0)
- Infineon XMC1401 (ARM Cortex-M0)



Effect No. 1: Fault Injection

Latch-up locked? | BS | 09/13/2018 | 3


Effect No. 1: Fault Injection

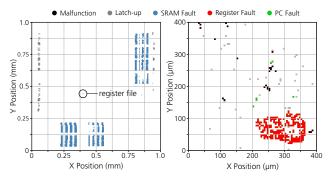
Latch-up locked? | BS | 09/13/2018 | 4


Effect No. 2: Latch-up

Latch-up locked? | BS | 09/13/2018 | 5

Test Setup

- Wavelength 1064 nm
- Pulse length 800 ps
- Spot size of approx. 4 μm
- Laser scanner with **100 nm** positioning precision



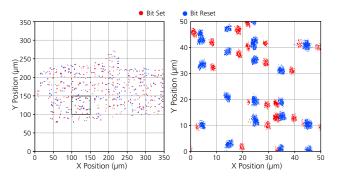
- Tested four microcontrollers on their susceptibility to LFI
- Interfacing via
 SWD / OpenOCD
- Backside fault injection
- Monitoring of the supply voltage

Infineon XMC1401 – ARM Cortex M0

Test for SRAM and Register File faults

Left: Full die scan *Right:* Zoom on the register file

Chip hardly affected by Latch-Ups.

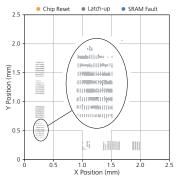

Faulting of the Register File and SRAM is feasible without any limitations.

Latch-up locked? | BS | 09/13/2018 | 7

NXP LPC11E14 – ARM Cortex M0

Test for Register File faults

Left: Coarse scan of Register File *Right:* Detailed scan with **200 nm** resolution


Distinguishable Set- and Rst-Fault sensitive spots, not affected by Latch-Ups.

Latch-up locked? | BS | 09/13/2018 | 8

NXP LPC11E14 – ARM Cortex M0

Test for SRAM faults

Latch-up

20.0

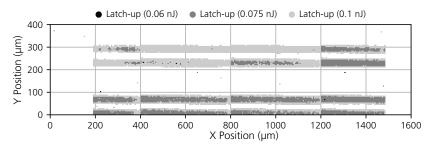
17.5

15.0

SRAM Fault

9

Detailed scan with 200 nm resolution

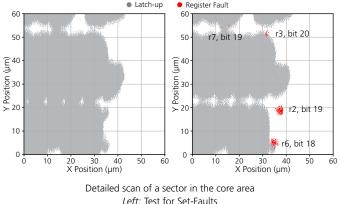

Laser illumination of SRAM region generates mostly Latch-Ups. Detailed scan of SRAM reveals spots susceptible for Fault Injection.

Latch-up locked? | BS | 09/13/2018 | 9

STM32F0 – ARM Cortex M0

Test for SRAM faults

Scan of the SRAM section with various pulse energies

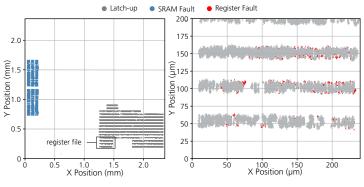

Laser illumination generates only Latch-Ups, hence **no Fault Injection was possible**. Test with increasing pulse energies shows, that there is no transition from FI to LU.

Latch-up locked? | BS | 09/13/2018 | 10 © Frauphofer

STM32F0 – ARM Cortex M0

Test for faults in the Register File

Right: Test for Rst-Faults


Register File highly susceptible for the generation of Latch-Ups.

However, sporadicly Fault Injections (Rst only) at the border of the core area were feasible.

STM32F4 – ARM Cortex M4

Test for SRAM and Register File faults

Left: Full die scan *Right:* Detailed scan of the register file

Fault in SRAM is feasible without limitations. However, Fault injection in SRAM region generates mostly Latch-Ups.

Comparison

	STM32F0	STM32F4	LPC11E14	XMC1401
SRAM Register File	LU LU / FI	FI LU / FI	LU / FI FI	FI FI
Suitability as non-security LFI test device	low	medium	high	high

Effect of LFI into different circuit parts (LU for latch-up, FI for successful fault injection, n/a for no results)

Conclusion

- Latch-Up sensitivity seems to be a major issue on certain devices
- Hence, LFI-based attacks seem not always to be feasible
- Highly different behavior on different devices
- Latch-up sensitive manufacturing process could be used as countermeasure?

Contact Information

Bodo Selmke

Department Hardware Security

Fraunhofer-Institute for Applied and Integrated Security (AISEC)

Address: Parkring 4 85748 Garching (near Munich) Germany Internet: http://www.aisec.fraunhofer.de

 Phone:
 +49 89 3229986-132

 Fax:
 +49 89 3229986-222

 E-Mail:
 bodo.selmke@aisec.fraunhofer.de

Latch-up locked? | BS | 09/13/2018 | 15 © Fraunhofer